174 research outputs found

    Quantum Crystallography in the Last Decade: Developments and Outlooks

    Get PDF
    In this review article, we report on the recent progresses in the field of quantum crystallography that has witnessed a massive increase of production coupled with a broadening of the scope in the last decade. It is shown that the early thoughts about extracting quantum mechanical information from crystallographic experiments are becoming reality, although a century after prediction. While in the past the focus was mainly on electron density and related quantities, the attention is now shifting toward determination of wavefunction from experiments, which enables an exhaustive determination of the quantum mechanical functions and properties of a system. Nonetheless, methods based on electron density modelling have evolved and are nowadays able to reconstruct tiny polarizations of core electrons, coupling charge and spin models, or determining the quantum behaviour at extreme conditions. Far from being routine, these experimental and computational results should be regarded with special attention by scientists for the wealth of information on a system that they actually contain

    An ontological modelling of multi-attribute criticality analysis to guide Prognostics and Health Management program development

    Get PDF
    Digital technologies are becoming more pervasive and industrial companies are exploiting them to enhance the potentialities related to Prognostics and Health Management (PHM). Indeed, PHM allows to evaluate the health state of the physical assets as well as to predict their future behaviour. To be effective in developing PHM programs, the most critical assets should be identified so to direct modelling efforts. Several techniques could be adopted to evaluate asset criticality; in industrial practice, criticality analysis is amongst the most utilised. Despite the advancement of artificial intelligence for data analysis and predictions, the criticality analysis, which is built upon both quantitative and qualitative data, has not been improved accordingly. It is the goal of this work to propose an ontological formalisation of a multi-attribute criticality analysis in order to i) fix the semantics behind the terms involved in the analysis, ii) standardize and uniform the way criticality analysis is performed, and iii) take advantage of the reasoning capabilities to automatically evaluate asset criticality and associate a suitable maintenance strategy. The developed ontology, called MOCA, is tested in a food company featuring a global footprint. The application shows that MOCA can accomplish the prefixed goals; specifically, high priority assets towards which direct PHM programs are identified. In the long run, ontologies could serve as a unique knowledge base that integrate multiple data and information across facilities in a consistent way. As such, they will enable advanced analytics to take place, allowing to move towards cognitive Cyber Physical Systems that enhance business performance for companies spread worldwide

    Synchro-push: A new production control paradigm

    Get PDF
    The paper aims at proposing a new production control paradigm, the Synchro-push, that offers a step forward with respect to the traditional push and pull production paradigms as for plant re-configurability power and quick reaction to demand changes: in fact, theoretically, it offers the advantages of the two traditional approaches without suffering their drawbacks. This could be of advantage for any manufacturing company and especially for SMEs (Small-Medium Enterprises), acting as a support against worldwide competition. The paper presents a brief history of the evolution of the push and pull approaches, the comparison between them and among the different alternatives that have been proposed in literature for their implementation. It presents the new approach, its theory and the subsequent industrial implications. The new approach is now made possible by the development of innovative smart technologies that allow the close-to-real-time decision making in scheduling and a higher level of modularity in the plant

    Core Characteristics of Reconfigurability and their Influencing Elements

    Get PDF
    The unpredictability of market requirements is more and more pushing manufacturing firms to be responsive. To this end, reconfigurability is needed. Reconfigurability is composed of six core characteristics: modularity, integrability, diagnosability, scalability, convertibility and customization. These characteristics are related with each other. This paper - exploiting the available literature - aims at identifying and analyzing elements influencing the core characteristics. As a result, characteristics, influencing elements and relationships have been located in a comprehensive framework. The novelty of this research is that the relationships between characteristics have been taken into account. For this reason, this research is considered a first step to understand how manufacturing firms can achieve reconfigurability, by fully exploiting the core characteristic

    A framework to manage reconfigurability in manufacturing

    Get PDF
    Nowadays, manufacturing firms are dealing with the unpredictability of market requirements and the frequent changes induced by technological innovation. For this reason, firms are more and more addressing the need to be responsive at an affordable cost. To do so, they are required to develop a capability called reconfigurability. This paper is a review of the existing literature because the current need makes interesting to reflect on the state of the art of reconfigurability as a concept. This reflection has led to focus on reconfigurability characteristics for both their relevance and their relationships with managerial decisions in manufacturing. To this end, a framework has been proposed. It is based on system lifecycle and production levels. These two elements have been deduced from literature and identified as relevant dimensions for decision-making

    A Literature-Based Analysis of the Cyber-Physical Systems Under the Lens of Reconfigurability

    Get PDF
    Cyber-physical systems (CPSs) are an increasingly known set of technologies and applications promising to enable manufacturing firms improving their responsiveness to deal with the unpredictability of market requirements. Indeed, from an operational perspective, responsiveness can be achieved because CPSs are an enabler of the reconfigurability of factories. Reconfigurability is a capability that has been theorized since almost two decades. Therefore, today we can consider such grounded theory as a lens to frame emerging CPS-related knowledge. This paper is an effort to give a contribution in this direction. In particular, starting from the acknowledgement that a relevant characteristic of reconfigurability is modularity, this research proposes a literature-based analysis of the Cyber-Physical Systems of the future smart factory

    Proteome-wide characterization of the RNA-binding protein RALY-interactome using the in vivo-biotinylation-pulldown-quant (iBioPQ) approach

    Get PDF
    RALY is a member of the heterogeneous nuclear ribonucleoproteins, a family of RNA-binding proteins generally involved in many processes of mRNA metabolism. No quantitative proteomic analysis of RALY-containing ribonucleoparticles (RNPs) has been performed so far, and the biological role of RALY remains elusive. Here, we present a workflow for the characterization of RALY's interaction partners, termed iBioPQ, that involves in vivo biotinylation of biotin acceptor peptide (BAP)-fused protein in the presence of the prokaryotic biotin holoenzyme synthetase of BirA so that it can be purified using streptavidin-coated magnetic beads, circumventing the need for specific antibodies and providing efficient pulldowns. Protein eluates were subjected to tryptic digestion and identified using data-independent acquisition on an ion-mobility enabled high-resolution nanoUPLC-QTOF system. Using label-free quantification, we identified 143 proteins displaying at least 2-fold difference in pulldown compared to controls. Gene Ontology overrepresentation analysis revealed an enrichment of proteins involved in mRNA metabolism and translational control. Among the most abundant interacting proteins, we confirmed RNA-dependent interactions of RALY with MATR3, PABP1 and ELAVL1. Comparative analysis of pulldowns after RNase treatment revealed a protein-protein interaction of RALY with eIF4AIII, FMRP, and hnRNP-C. Our data show that RALY-containing RNPs are much more heterogeneous than previously hypothesized

    Ankyrin-G induces nucleoporin Nup358 to associate with the axon initial segment of neurons.

    Get PDF
    RanBP2/Nup358 is a member of the large nucleoporin family constituting the nuclear pore complex (NPC). Depending on the cell type and the physiological state, Nup358 interacts with specific partner proteins and influences distinct mechanisms independent of its role in nucleocytoplasmic transport. Here, we provide evidence that Nup358 associates selectively with the axon initial segment (AIS) of mature neurons and mediated by the AIS scaffold ankyrin-G. The N-terminus of Nup358 is found to be sufficient for its localization at the AIS. Further, we show that Nup358 is expressed as two isoforms, one full-length and another shorter form of Nup358. These isoforms differ in their subcellular distribution in neurons and expression level during neuronal development. Overall, the present study highlights an unprecedented localization of Nup358 within the AIS and suggests its involvement in neuronal function
    • …
    corecore